Processing math: 100%

ক্রিকোণমিতিক অনুপাত (অধ্যায় ৭)

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ১ম পত্র | - | NCTB BOOK
827
827
Please, contribute by adding content to ক্রিকোণমিতিক অনুপাত.
Content

# বহুনির্বাচনী প্রশ্ন

নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:

A + B + C =  π

- sinA2
- cos A2
sin A2
cos A2
নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:
5π6
12
3
22
32
নিচের উদ্দীপকের আলোকে পরবর্তী প্রশ্নের উত্তর দাও:
57
75
74
47

ত্রিকোণমিতিক অনুপাতের ধারণা

308
308

ত্রিকোণমিতিক অনুপাত হল একটি ত্রিভুজের কোণ এবং বাহুর মধ্যে সম্পর্ক বোঝানোর একটি গুরুত্বপূর্ণ পদ্ধতি। এটি মূলত ডান-কোণ ত্রিভুজে ব্যবহৃত হয় এবং এর মাধ্যমে বিভিন্ন কোণের মান অনুযায়ী বাহুর দৈর্ঘ্যের অনুপাত নির্ধারণ করা যায়।

ত্রিকোণমিতিক অনুপাতের প্রধান ছয়টি প্রকার রয়েছে:


  • সাইন (sin): ত্রিভুজের কোনো একটি কোণের বিপরীত বাহু এবং অতিভুজের (hypotenuse) অনুপাত।
  • কোসাইন (cos): ত্রিভুজের কোনো একটি কোণের সংলগ্ন বাহু এবং অতিভুজের অনুপাত।
  • ট্যানজেন্ট (tan): ত্রিভুজের কোনো একটি কোণের বিপরীত বাহু এবং সংলগ্ন বাহুর অনুপাত।

অন্যান্য তিনটি অনুপাত হল এই তিনটির বিপরীত:

  • কোস্যাকেন্ট (csc): সাইন এর বিপরীত, অর্থাৎ অতিভুজ এবং বিপরীত বাহুর অনুপাত।
  • সেকেন্ট (sec): কোসাইন এর বিপরীত, অর্থাৎ অতিভুজ এবং সংলগ্ন বাহুর অনুপাত।
  • কোট্যানজেন্ট (cot): ট্যানজেন্ট এর বিপরীত, অর্থাৎ সংলগ্ন বাহু এবং বিপরীত বাহুর অনুপাত।

ত্রিকোণমিতিক অনুপাতের ধারণা ব্যবহার করে বিভিন্ন ত্রিকোণমিতিক সমস্যা সমাধান করা যায়।

ত্রিকোণমিতিক রাশির পরিচয় এবং তাদের মূলসূত্র

307
307

ত্রিকোণমিতিক রাশির ধারণা ত্রিকোণমিতি অধ্যয়নের মূল বিষয়বস্তু। ত্রিকোণমিতিক রাশি একটি ডান-কোণ ত্রিভুজের কোণ এবং বাহুর সম্পর্ক নির্ধারণে ব্যবহৃত হয়। এগুলি মূলত কোনের একটি নির্দিষ্ট মান অনুযায়ী বিভিন্ন অনুপাত দিয়ে প্রকাশ করা হয়। ত্রিকোণমিতিক রাশির প্রধান ছয়টি রাশি নিম্নরূপ:


১. সাইন (sin)

  • সংজ্ঞা: ডান-কোণ ত্রিভুজের একটি কোণের বিপরীত বাহু এবং অতিভুজের (hypotenuse) অনুপাত।
  • সূত্র: sinθ=বিপরীত বাহুঅতিভুজ

২. কোসাইন (cos)

  • সংজ্ঞা: ত্রিভুজের একটি কোণের সংলগ্ন বাহু এবং অতিভুজের অনুপাত।
  • সূত্র: cosθ=সংলগ্ন বাহুঅতিভুজ

৩. ট্যানজেন্ট (tan)

  • সংজ্ঞা: ত্রিভুজের একটি কোণের বিপরীত বাহু এবং সংলগ্ন বাহুর অনুপাত।
  • সূত্র: tanθ=বিপরীত বাহুসংলগ্ন বাহু

বিপরীত রাশি (Reciprocal Functions)

ত্রিকোণমিতির তিনটি বিপরীত রাশি রয়েছে, যা উপরের রাশিগুলোর বিপরীত হিসেবে বিবেচিত হয়:

৪. কোস্যাকেন্ট (csc)

  • সংজ্ঞা: সাইন এর বিপরীত রাশি।
  • সূত্র: cscθ=অতিভুজবিপরীত বাহু=1sinθ

৫. সেকেন্ট (sec)

  • সংজ্ঞা: কোসাইন এর বিপরীত রাশি।
  • সূত্র: secθ=অতিভুজসংলগ্ন বাহু=1cosθ

৬. কোট্যানজেন্ট (cot)

  • সংজ্ঞা: ট্যানজেন্ট এর বিপরীত রাশি।
  • সূত্র: cotθ=সংলগ্ন বাহুবিপরীত বাহু=1tanθ

ত্রিকোণমিতিক রাশির মূলসূত্র

ত্রিকোণমিতিতে কিছু গুরুত্বপূর্ণ সূত্র রয়েছে যা বিভিন্ন সমস্যার সমাধানে সহায়ক হয়:

  1. পাইথাগোরাসের উপপাদ্য: sin2θ+cos2θ=1
  2. ট্যানজেন্ট ও সাইন-কোসাইন সম্পর্ক: tanθ=sinθcosθ
  3. কোট্যানজেন্ট ও কোস্যাকেন্ট-সেকেন্ট সম্পর্ক: cotθ=cosθsinθ
  4. কোস্যাকেন্ট ও সাইন সম্পর্ক: cscθ=1sinθ
  5. সেকেন্ট ও কোসাইন সম্পর্ক: secθ=1cosθ

এই রাশিগুলি এবং সূত্রগুলি ত্রিকোণমিতিতে গণনা এবং বিভিন্ন ধরনের সমস্যার সমাধানে গুরুত্বপূর্ণ ভূমিকা পালন করে।

কোণের ডিগ্রি,রেডিয়ান পরিমাপ

1.3k
1.3k

ত্রিকোণমিতিতে কোণ পরিমাপের জন্য সাধারণত দুটি একক ব্যবহৃত হয়: ডিগ্রি এবং রেডিয়ান। এই দুটি একক ত্রিকোণমিতিক গণনায় একে অপরের পরিপূরক হিসেবে ব্যবহৃত হয়। চলুন ডিগ্রি ও রেডিয়ান সম্পর্কে বিস্তারিত জানি।


ডিগ্রি পরিমাপ

ডিগ্রি হলো কোণ পরিমাপের একটি প্রাচীন একক। একটি পূর্ণ বৃত্তের পরিমাপ ধরা হয় ৩৬০ ডিগ্রি। তাই,

  • °= ১ ডিগ্রি, অর্থাৎ বৃত্তের পরিধির 1360 ভাগ।
  • কিছু গুরুত্বপূর্ণ ডিগ্রি মান:
    • 90° (একটি সমকোণ)
    • 180° (একটি সরল কোণ)
    • 360° (পূর্ণ বৃত্ত)

রেডিয়ান পরিমাপ

রেডিয়ান হলো কোণ পরিমাপের একটি আধুনিক ও গণিতশাস্ত্রগত একক। এটি ত্রিকোণমিতিতে এবং উচ্চতর গণিতের অনেক ক্ষেত্রে ব্যবহৃত হয়। একটি পূর্ণ বৃত্তের পরিধি হয় 2π রেডিয়ান, যার মান প্রায় ৬.২৮৩। তাই,

  • 1 রেডিয়ান হলো বৃত্তের পরিধির 12π অংশ।
  • কিছু গুরুত্বপূর্ণ রেডিয়ান মান:
    • π2 রেডিয়ান =90°
    • π রেডিয়ান =180°
    • 2π রেডিয়ান =360°

ডিগ্রি ও রেডিয়ানের রূপান্তর

ডিগ্রি ও রেডিয়ান পরিমাপের মধ্যে রূপান্তর একটি সাধারণ প্রক্রিয়া। নিচের সূত্র ব্যবহার করে ডিগ্রি থেকে রেডিয়ান এবং রেডিয়ান থেকে ডিগ্রিতে রূপান্তর করা যায়:

  • ডিগ্রি থেকে রেডিয়ান: radian=degree×π180
  • রেডিয়ান থেকে ডিগ্রি: degree=radian×180π

উদাহরণ

১. 180° কে রেডিয়ানে রূপান্তর করতে:
180°=180×π180=π রেডিয়ান

২. π3 রেডিয়ানকে ডিগ্রিতে রূপান্তর করতে:
π3 রেডিয়ান=π3×180π=60°


সংক্ষেপে

  • পূর্ণ বৃত্ত: 360°=2π রেডিয়ান
  • সমকোণ: 90°=π2 রেডিয়ান
  • সরল কোণ: 180°=π রেডিয়ান

ডিগ্রি এবং রেডিয়ান পরিমাপের জ্ঞান ত্রিকোণমিতি ও কোণের পরিমাপের সমস্যার সমাধানে অত্যন্ত গুরুত্বপূর্ণ।

চতুর্ভাগ অনুযায়ী ত্রিকোনমিতিক অনুপাতের চিহ্ন

1.1k
1.1k

ত্রিকোণমিতিক অনুপাতের চিহ্ন নির্ধারণে কোণের অবস্থান, অর্থাৎ কোন চতুর্ভাগে কোণটি অবস্থিত, তা অত্যন্ত গুরুত্বপূর্ণ ভূমিকা পালন করে। একটি বৃত্ত চারটি চতুর্ভাগে বিভক্ত এবং প্রতিটি চতুর্ভাগে ত্রিকোণমিতিক রাশিগুলির চিহ্ন আলাদা হয়।


চতুর্ভাগের বিবরণ অনুযায়ী ত্রিকোণমিতিক অনুপাতের চিহ্ন

১ম চতুর্ভাগ (0° থেকে 90°)

  • এই চতুর্ভাগে সব ত্রিকোণমিতিক রাশি ধনাত্মক
  • অর্থাৎ, sin, cos, tan, csc, sec, এবং cot সবগুলোর মান ধনাত্মক হয়।

২য় চতুর্ভাগ (90° থেকে 180°)

  • এই চতুর্ভাগে শুধুমাত্র sin এবং এর বিপরীত csc ধনাত্মক
  • অন্যান্য রাশি যেমন cos, tan, sec, এবং cot ঋণাত্মক হয়।

৩য় চতুর্ভাগ (180° থেকে 270°)

  • এই চতুর্ভাগে শুধুমাত্র tan এবং এর বিপরীত cot ধনাত্মক
  • অন্য রাশি যেমন sin, cos, csc, এবং sec ঋণাত্মক হয়।

৪র্থ চতুর্ভাগ (270° থেকে 360°)

  • এই চতুর্ভাগে শুধুমাত্র cos এবং এর বিপরীত sec ধনাত্মক
  • অন্য রাশি যেমন sin, tan, csc, এবং cot ঋণাত্মক হয়।

সংক্ষেপে

এটি সহজে মনে রাখার জন্য একটি জনপ্রিয় নিয়ম ব্যবহার করা হয়: **"All Students Take Calculus"**। এই বাক্যাংশে,

  • A (All) বোঝায় ১ম চতুর্ভাগ, যেখানে সব রাশি ধনাত্মক।
  • S (Students) বোঝায় ২য় চতুর্ভাগ, যেখানে sin এবং csc ধনাত্মক।
  • T (Take) বোঝায় ৩য় চতুর্ভাগ, যেখানে tan এবং cot ধনাত্মক।
  • C (Calculus) বোঝায় ৪র্থ চতুর্ভাগ, যেখানে cos এবং sec ধনাত্মক।

উদাহরণ

১. 120° কোণটি ২য় চতুর্ভাগে অবস্থিত, তাই sin এর মান ধনাত্মক হবে এবং cos, tan, ইত্যাদি ঋণাত্মক হবে।

২. 240° কোণটি ৩য় চতুর্ভাগে অবস্থিত, তাই tan এর মান ধনাত্মক এবং sin, cos ইত্যাদি ঋণাত্মক।


এইভাবে, কোণের চতুর্ভাগের অবস্থান জেনে ত্রিকোণমিতিক রাশির চিহ্ন নির্ধারণ করা যায়, যা গণনাগুলিকে আরও সহজ করে।

ত্রিকোণমিতিক ফাংশন এবং তাদের সংজ্ঞা

271
271

অন্বয় এবং ফাংশন গাণিতিক এবং প্রোগ্রামিং এর দুটি গুরুত্বপূর্ণ ধারণা। এখানে তাদের ব্যাখ্যা দেওয়া হলো:


অন্বয় (Composition)

অন্বয় হল দুই বা ততোধিক ফাংশনের সমন্বয়। যখন একটি ফাংশনের আউটপুটকে আরেকটি ফাংশনের ইনপুট হিসেবে ব্যবহার করা হয়, তখন তাকে অন্বয় বলা হয়। এটি সাধারণত f(g(x)) বা fg(x) আকারে প্রকাশ করা হয়, যেখানে g(x) প্রথমে কার্যকর হবে এবং এরপর f(x) তে যাবে।

উদাহরণ:
ধরা যাক f(x)=x+2 এবং g(x)=x2। তখন, fg(x) হবে:
f(g(x))=f(x2)=x2+2


ফাংশন (Function)

ফাংশন এমন একটি গাণিতিক সম্পর্ক যা একটি নির্দিষ্ট ইনপুটের জন্য একটি নির্দিষ্ট আউটপুট প্রদান করে। অর্থাৎ, ফাংশন একটি ইনপুটকে একটি নির্দিষ্ট আউটপুটে ম্যাপ করে। ফাংশন সাধারণত f(x) আকারে প্রকাশ করা হয়, যেখানে x হল ইনপুট এবং f(x) হল সেই ইনপুটের জন্য আউটপুট।

উদাহরণ:
f(x)=2x+3 একটি ফাংশন যেখানে x ইনপুট হলে আউটপুট হবে 2x+3

Content added || updated By
টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion